
Lecture 7
Python and SQL

Lecturer: Pieter De Bleser

Bioinformatics Core Facility, IRC

Slides derived from: Andrew C.R. Martin (andrew.martin@ucl.ac.uk); Charles R. Severance (www.dr-chuck.com);www.pynative.com

mailto:andrew.martin@ucl.ac.uk
http://www.dr-chuck.com/

Analog Databases – example
A Congress database

• Address book and a ledger

• Address book:
– Speaker name (quick access via lettered tabs)
– Speaker email address
– Speaker phone number

• Ledger:
– Session name
– Speaker name
– Session description
– Session start
– Session duration

Adding Data

• Address Book:
– Find the right letter tab

– Write in the information

• Ledger:
– Make sure you added speaker to address book first

– Find an open row

– Add speaker, session and duration information

Finding Data

• Address Book:
– Flip to correct letter tab, look down list to find right

contact

• Ledger:
– Scroll down ledger sheet to find correct session

name

Cross-Referencing
• Address book

– Look up a name
– Look for the name in the ledger to see what sessions they deliver

at the conference

• Ledger
– Look up a session in the ledger
– Note the speaker’s name
– Look up the speaker in the address book

Updating/Deleting Data

• Find the data

• Get out an eraser/whiteout

• Fill in new data

• Update the ledger to reflect name changes in
the address book if needed

Relational Databases

http://en.wikipedia.org/wiki/Relational_database

Relational databases model data by storing rows and columns
in tables. The power of the relational database lies in its ability
to efficiently retrieve data from those tables and in particular
where there are multiple tables and the relationships between
those tables involved in the query.

Terminology

 Database - contains many tables
 Relation (or table) - contains tuples and attributes
 Tuple (or row) - a set of fields that generally

represents an “object” like a person or a music
track

 Attribute (also column or field) - one of possibly
many elements of data corresponding to the object
represented by the row

A relation is defined as a set of tuples that have the same attributes. A tuple usually represents an object
and information about that object. Objects are typically physical objects or concepts. A relation is usually
described as a table, which is organized into rows and columns. All the data referenced by an attribute

are in the same domain and conform to the same constraints. (Wikipedia)

SQL

Structured Query Language is the language we use to issue commands to
the database

- Create data (a.k.a Insert)

- Retrieve data

- Update data

- Delete data

http://en.wikipedia.org/wiki/SQL

http://en.wikipedia.org/wiki/SQL

Database
File

Python
Programs

You
SQLite

Browser

SQL

SQL

Input
Files

Output
Files

R

Excel

D3.js

Web Applications w/ Databases

Application Developer - Builds the logic for the application, the look and feel
of the application - monitors the application for problems

Database Administrator - Monitors and adjusts the database as the program
runs in production

Often both people participate in the building of the “Data model”

Database
Data Server

Application
Software

End
User

Developer

DBA
Database

Tools

SQL

SQL

Database Administrator

http://en.wikipedia.org/wiki/Database_administrator

A database administrator (DBA) is a person responsible for the
design, implementation, maintenance, and repair of an
organization’s database. The role includes the development and
design of database strategies, monitoring and improving database
performance and capacity, and planning for future expansion
requirements. They may also plan, coordinate, and implement
security measures to safeguard the database.

Database Model

http://en.wikipedia.org/wiki/Database_model

A database model or database schema is the structure or
format of a database, described in a formal language
supported by the database management system. In other
words, a “database model” is the application of a data
model when used in conjunction with a database
management system.

Common Database Systems

• Three major Database Management Systems in wide use

- Oracle - Large, commercial, enterprise-scale, very very tweakable

- MySql - Simpler but very fast and scalable - commercial open source

- SqlServer - Very nice - from Microsoft (also Access)

• Many other smaller projects, free and open source

- HSQL, SQLite, Postgres, ...

SQLite is in Lots of Software...

http://www.sqlite.org/famous.html

http://www.sqlite.org/famous.html

SQLite Browser

 SQLite is a very popular database - it is free and fast and
small

 SQLite Browser allows us to directly manipulate SQLite
files
 http://sqlitebrowser.org/

 SQLite is embedded in Python and a number of other
languages

https://sqlitebrowser.org/

Lets Make a Database!

CREATE a table

CREATE a table

1. Database data is stored in tables
composed of rows and fields of a
defined type and size

2. Each field contains one piece of
information

3. Use the equivalent of line numbers in a
ledger to make it easier to link tables
together for querying with an
AUTO_INCREMENT field:

CREATE an INDEX

CREATE an INDEX
• Indexes allow the DBMS to skip to the right row (or skip closer to the

right row), similar to how the lettered tabs work in an address book

CREATE table ‘session’

INSERTing Data
Use INSERT statements to add data to a table, specifying which
table you are adding data to and what the data is

INSERTing Data – Browse Data

INSERTing Data
insert into session(name,speaker_id,description,start,duration) values('Python and
SQL',last_insert_rowid(),'Database creation and how to query them using Python?','2019-11-13 8:30',240);

Exercise:
Add 3 more records in the ‘speaker’ and ‘session’

tables.

Do not forget to save your changes to the
congress database!

Simple SELECT
• Use a SELECT query to retrieve data from one or more tables

• SELECT queries involve a table name and a list of fields to return

• SELECT * FROM speaker;
– Returns all fields from all rows

• SELECT last_name, first_name, email FROM speaker;
– Returns just the last and first name and email address

UPDATEing Data

• Use UPDATE statements to change the contents of one or more
fields

• UPDATE speaker SET email = ‘pieterdb@ugent.be’;

• UPDATE speaker SET email = ‘pieterdb@ugent.be’
WHERE last_name = ‘De Bleser’ AND first_name =
‘Pieter’;

(Bad)

(Good)

DELETEing Data

Use the DELETE statement to remove rows from a table:

• DELETE FROM speaker; (Very Bad)

• DELETE FROM speaker WHERE last_name = ‘De Bleser’;

• SELECT FROM speaker WHERE last_name = ‘De Bleser’;

• CREATE TABLE speaker_copy AS SELECT * FROM speaker
WHERE 1;

Advanced SELECTs

Concatenating data:
SELECT last_name || ', ' || first_name AS full_name FROM speaker;

Wildcards:
SELECT name, description FROM session WHERE description LIKE '%using%';

Advanced SELECTs

Ordering data:

SELECT last_name, first_name FROM speaker ORDER BY last_name,
first_name;

Using functions:

SELECT current_date;
select current_time;
select current_timestamp;

Advanced SELECTs

Aliases

SELECT last_name || ', ' || first_name AS full_name FROM speaker;

Limiting results

SELECT * FROM speaker LIMIT 2;

Cross-Referencing
• Cartesian Product

– SELECT * FROM speaker, session;

• Simple JOIN

– SELECT * FROM speaker, session
WHERE speaker.speaker_id = session.speaker_id;

Cross-Referencing

• Selecting Columns:

SELECT speaker.last_name || ', ' || speaker.first_name AS speaker,
session.name AS session
FROM speaker JOIN session ON
speaker.speaker_id = session.speaker_id;

Cross-Referencing

• LEFT JOINS

• Add WHERE session.name IS NULL to get
only the speakers without sessions

SELECT speaker.last_name || ', ' || speaker.first_name AS speaker,
session.name AS session
FROM speaker LEFT JOIN session ON
speaker.speaker_id = session.speaker_id;

Python database applications development with
the SQLite database.

Topics
 Connecting to the SQLite database from Python and creating a SQLite database and tables.

 SQLite Datatypes and it’s corresponding Python types.

 How to perform SQLite CRUD operation i.e., data insertion, data retrieval, data update, and data deletion
from Python.

 How to execute SQLite scripts from Python.

 Insert/Retrieve data in SQLite using Python.

 SQLite error-handling techniques to develop robust python programs.

Steps to connect to SQLite

1. Use the connect() method of a sqlite3 module and pass the database
name as an argument to create a connection object.

2. Create a cursor object using the connection object returned by the
connect method to execute SQLite queries from Python.

3. Close the cursor object and SQLite database connection object when
work is done.

4. Catch database exception if any that may occur during this
connection process.

Steps to connect to SQLite - example

import sqlite3

try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Database created and successfully connected to SQLite")

 sqlite_select_Query = "select sqlite_version();"
 cursor.execute(sqlite_select_Query)
 record = cursor.fetchall()
 print("SQLite database version is: ", record)
 cursor.close()

except sqlite3.Error as error:
 print("Error while connecting to sqlite", error)
finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

sqlite_connect.py

> python sqlite_connect.py
Database created and successfully connected to SQLite
SQLite database version is: [('3.29.0',)]
The SQLite connection is closed

Notes:
 Using a try-except-finally block: all the code resides in

the try-except block to catch the SQLite database
exceptions and error that may occur during this
process.

 Using the sqlite3.Error class of sqlite3 module allows
the handling of any database error and exception that
may occur while working with SQLite from Python.

This approach makes the application robust.
The sqlite3.Error class helps to understand the error in
detail as it returns an error message and error code.

How to create a SQLite table

Steps for creating a table in SQLite from Python:

1.Connect to SQLite using a sqlite3.connect().

2.Prepare a create table query.

3.Execute the query using a cursor.execute(query)

4.Close the SQLite database connection and cursor
object.

import sqlite3

try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 sqlite_create_table_query = '''CREATE TABLE `speaker` (
 `speaker_id` INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 `first_name` varchar (128) NOT NULL,
 `last_name` varchar (128) NOT NULL,
 `phone` int (10) NOT NULL,
 `email` varchar (255) NOT NULL);'''

 cursor = sqliteConnection.cursor()
 print("Successfully Connected to SQLite")
 cursor.execute(sqlite_create_table_query)
 sqliteConnection.commit()
 print("SQLite table created")

 cursor.close()

except sqlite3.Error as error:
 print("Error while creating a sqlite table", error)
finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("sqlite connection is closed")

How to create a SQLite table - ‘speaker’

> python sqlite_create_table.py
Successfully Connected to SQLite
SQLite table created
sqlite connection is closed

Exercise: create the SQLite table - ‘session’

CREATE TABLE `session` (
`name` varchar (60) NOT NULL,
`speaker_id` INTEGER NOT NULL UNIQUE,
`description` varchar (500) NOT NULL,
`start` datetime NOT NULL,
`duration` INTEGER NOT NULL,
PRIMARY KEY(`name`)

);

Check the result in the SQLite DB Browser.
Write a script combining the creation of the ‘speaker’ and ‘session’ tables.
Can you run this script without errors? Why (not)?

Create and execute a new script ‘sqlite_create_table_session.py’ using
following table definition:

SQLite Datatypes and corresponding Python types

SQLite DataTypes:
NULL: – The value is a NULL value.
INTEGER: – To store the numeric value. The integer stored in 1, 2, 3, 4, 6, or 8 bytes depending on the magnitude of the number.
REAL: – The value is a floating-point value, for example, 3.14 value of PI
TEXT: – The value is a text string, TEXT value stored using the UTF-8, UTF-16BE or UTF-16LE encoding.
BLOB: – The value is a blob of data, i.e., binary data. It is used to store images and files.

Compatible Python versus SQLite data types:

Perform SQLite CRUD Operations from Python

1.Python Insert into SQLite Table

2.Python Select from SQLite Table

3.Python Update SQLite Table

4.Python Delete from SQLite Table

Python Insert into SQLite Table

How to:

1.Insert single and multiple rows into the SQLite table.

2.Insert Integer, string, float, double, and datetime values into a
SQLite table.

3.Use a parameterized query to insert Python variables as
dynamic data into a table.

How to insert a single row/record into SQLite table?

Steps to take:

1.Establish a SQLite connection from Python.
2.Create a cursor object using the connection object.
3.Define the SQLite INSERT Query. Here you need to know the table, and

it’s column details.
4.Execute the INSERT query using the cursor.execute()
5.Commit your changes to the database.
6.Close the SQLite database connection.
7.Catch SQLite exceptions if any.
8.verify the result by selecting data from SQLite table.

How to insert a single row/record into SQLite table?

import sqlite3

try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Successfully Connected to SQLite")

 sqlite_insert_speaker = """insert into speaker(first_name,last_name,phone,email)
 values('Pieter','De Bleser',13554,'pieterdb@irc.vib-ugent.be');"""

 count = cursor.execute(sqlite_insert_speaker)
 sqliteConnection.commit()
 print("Record inserted successfully into speaker table ", cursor.rowcount)
 cursor.close()

except sqlite3.Error as error:
 print("Failed to insert data into sqlite table", error)
finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

> python sqlite_insert_single_record.py
Successfully Connected to SQLite
Record inserted successfully into speaker table 1
The SQLite connection is closed

sqlite_insert_single_record.py

Using Python variables in SQLite INSERT query

We use a parameterized query to insert Python variables into the
table.
A parameterized query is a query in which placeholders used for
parameters and the parameter values supplied at execution time.
That means parameterized query gets compiled only once.

import sqlite3

def insertVariableIntoTable(first_name, last_name, phone, email):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sqlite_insert_with_param = """insert into speaker(first_name,last_name,phone,email)
 values(?,?,?,?);"""

 data_tuple = (first_name,last_name,phone,email)
 cursor.execute(sqlite_insert_with_param, data_tuple)
 sqliteConnection.commit()
 print("Python Variables inserted successfully into speaker table")

 cursor.close()

 except sqlite3.Error as error:
 print("Failed to insert Python variable into sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

insertVariableIntoTable('Joe', 'Bonamassa',23987,'joe@blues.org')
insertVariableIntoTable('Carlos', 'Santana',77755,'carlos@blues.org')
insertVariableIntoTable('Linus', 'Torvalds',88888,'linus@.linux.org')

> python sqlite_insert_single_record_parameterized.py
Connected to SQLite
Python Variables inserted successfully into speaker table
The SQLite connection is closed
Connected to SQLite
Python Variables inserted successfully into speaker table
The SQLite connection is closed
Connected to SQLite
Python Variables inserted successfully into speaker table
The SQLite connection is closed

Python Insert multiple rows into SQLite table

In the previous example, we have used the execute() method of the
cursor object to insert a single record but sometimes we need to
insert multiple rows into the table in a single insert query.

A bulk insert operation in a single query can be done using the
cursor.executemany() method.

cursor.executemany() accepts two arguments: SQL query and a
records list.

import sqlite3

def insertMultipleRecords(recordList):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sqlite_insert_query = """insert into speaker(first_name,last_name,phone,email)
 values(?,?,?,?);"""

 cursor.executemany(sqlite_insert_query, recordList)
 sqliteConnection.commit()
 print("Total", cursor.rowcount, "Records inserted successfully into speaker table")
 sqliteConnection.commit()
 cursor.close()

 except sqlite3.Error as error:
 print("Failed to insert multiple records into sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

recordsToInsert = [('Jos','Vermeulen',55555,'jos@gmail.com'),
 ('Chris','De Wilde',44444,'chris@gmail.com'),
 ('Jonny','Winter',22222,'jonny@gmail.com')]

insertMultipleRecords(recordsToInsert)

> python sqlite_insert_multiple_records.py
Connected to SQLite
Total 3 Records inserted successfully into speaker table
The SQLite connection is closed

Python Select from SQLite Table

Goals:
How to use the Python built-in module sqlite3 to fetch rows from a SQLite
table to:
1.Fetch all rows using cursor.fetchall()
2.Use cursor.fetchmany(size) to fetch limited rows
3.Fetch only one single row using cursor.fetchone()
4.Use the Python variable in the SQLite Select query to pass dynamic

values to the query.

Steps to fetch rows from SQLite table

1.Establish SQLite Connection from Python.
2.Define the SQLite SELECT statement query. Here you need to know the

table, and it’s column details.
3.Execute the SELECT query using the cursor.execute() method.
4.Get rows from the cursor object using a cursor.fetchall()
5.Iterate over the rows and get each row and its column value.
6.Close the Cursor and SQLite database connection.
7.Catch any SQLite exceptions that may come up during the process.

import sqlite3

def readSqliteTable():
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sqlite_select_query = """SELECT * from speaker"""
 cursor.execute(sqlite_select_query)
 records = cursor.fetchall()
 print("Total rows are: ", len(records))
 print("Printing each row")
 for row in records:
 print("speaker_id: ", row[0])
 print("first_name: ", row[1])
 print("last_name: ", row[2])
 print("phone: ", row[3])
 print("email: ", row[4])
 print("\n")

 cursor.close()

 except sqlite3.Error as error:
 print("Failed to read data from sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

readSqliteTable()

sqlite_fetch_all_rows.py

> python sqlite_fetch_all_rows.py
Connected to SQLite
Total rows are: 7
Printing each row
speaker_id: 1
first_name: Pieter
last_name: De Bleser
phone: 13554
email: pieterdb@irc.vib-ugent.be

speaker_id: 2
first_name: Joe
last_name: Bonamassa
phone: 23987
email: joe@blues.org

speaker_id: 3
first_name: Carlos
last_name: Santana
phone: 77755
email: carlos@blues.org

speaker_id: 4
first_name: Linus
last_name: Torvalds
phone: 88888
email: linus@.linux.org

...

Use Python variables as parameters in SQLite Select Query

Many times we need to pass a variable to SQLite select query in
the where clause to check some condition.To handle such a
requirement, we need to use a parameterized query.
A parameterized query is a query in which placeholders used for
parameters and the parameter values supplied at execution time.
That means parameterized query gets compiled only once.

import sqlite3

def getSpeakerInfo(speaker_id):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sql_select_query = """select * from speaker where speaker_id = ?"""
 cursor.execute(sql_select_query, (speaker_id,))
 records = cursor.fetchall()
 print("Printing ID ", speaker_id)
 for row in records:
 print("speaker_id: ", row[0])
 print("first_name: ", row[1])
 print("last_name: ", row[2])
 print("phone: ", row[3])
 print("email: ", row[4])
 print("\n")
 cursor.close()

 except sqlite3.Error as error:
 print("Failed to read data from sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

getSpeakerInfo(2)

> python sqlite_fetch_records_parameterized.py
Connected to SQLite
Printing ID 2
speaker_id: 2
first_name: Joe
last_name: Bonamassa
phone: 23987
email: joe@blues.org

Select limited rows from SQLite table using cursor.fetchmany()

In some circumstances to fetch all the data rows from a
table is a time-consuming task if a table contains
thousands of rows.

To fetch all rows, we have to use more resources, so we
need more space and processing time. To enhance
performance it is advisable to use the fetchmany(SIZE)
method of the cursor class to fetch fewer rows.

Using cursor.fetchmany(size) method, we can specify
how many rows we want to read.

import sqlite3

def readLimitedRows(rowSize):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sqlite_select_query = """SELECT * from speaker"""
 cursor.execute(sqlite_select_query)
 print("Reading ", rowSize, " rows")
 records = cursor.fetchmany(rowSize)
 print("Printing each row \n")
 for row in records:
 print("speaker_id: ", row[0])
 print("first_name: ", row[1])
 print("last_name: ", row[2])
 print("phone: ", row[3])
 print("email: ", row[4])
 print("\n")

 cursor.close()

 except sqlite3.Error as error:
 print("Failed to read data from sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

readLimitedRows(2)

> python sqlite_fetch_many.py
Connected to SQLite
Reading 2 rows
Printing each row

speaker_id: 1
first_name: Pieter
last_name: De Bleser
phone: 13554
email: pieterdb@irc.vib-
ugent.be

speaker_id: 2
first_name: Joe
last_name: Bonamassa
phone: 23987
email: joe@blues.org

The SQLite connection is
closed

Select a single row from SQLite table using cursor.fetchone()

 When you want to read only one row from the SQLite table, use the
fetchone() method of a cursor class.

 This method is used also in the situations when you know the query is
going to return only one row.

 The cursor.fetchone() method retrieves the next row from the result
set.
 This method returns a single record or None if no more rows are

available.

import sqlite3

def readSingleRow(speaker_id):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sqlite_select_query = """SELECT * from speaker where speaker_id = ?"""
 cursor.execute(sqlite_select_query, (speaker_id,))
 print("Reading single row \n")
 record = cursor.fetchone()
 print("speaker_id: ", record[0])
 print("first_name: ", record[1])
 print("last_name: ", record[2])
 print("phone: ", record[3])
 print("email: ", record[4])
 print("\n")

 cursor.close()

 except sqlite3.Error as error:
 print("Failed to read single row from sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

readSingleRow(3)

> python sqlite_fetch_one.py
Connected to SQLite
Reading single row

speaker_id: 3
first_name: Carlos
last_name: Santana
phone: 77755
email: carlos@blues.org

The SQLite connection is closed

Python Update SQLite Table
Topics:

 Update single and multiple columns of a row

 Use a parameterized query to provide value at
runtime to the update query.

 Update a column with date-time and timestamp
values

 Perform bulk update using a single query.

Steps to update a single record of SQLite table

1.Establish the SQLite connection from Python.
2.Create a cursor object using the connection object.
3.Define the SQLite UPDATE Query. Here you need to know

the table, and it’s column name which you want to update.
4.Execute the UPDATE query using the cursor.execute()
5.After the successful execution of a SQLite update query,

Don’t forget to commit your changes to the database.
6.Close the SQLite database connection.
7.Catch SQLite exceptions if any.
8.Verify the result by selecting data from a SQLite table from

Python.

import sqlite3

def updateSqliteTable():
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sql_update_query = """Update speaker set phone = 10000 where speaker_id = 4"""
 cursor.execute(sql_update_query)
 sqliteConnection.commit()
 print("Record Updated successfully ")
 cursor.close()

 except sqlite3.Error as error:
 print("Failed to update sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

updateSqliteTable()

> python sqlite_update_single_record.py
Connected to SQLite
Record Updated successfully
The SQLite connection is closed

Using Python variables in SQLite UPDATE query

Most of the time, we need to update a table with some runtime values. For example, when
users updating their profile or any other details through User Interface in such cases, we
need to update a table with those new values.

In such circumstances, It is always best practice to use a parameterized query. The
parameterized query uses placeholders (?) inside SQL statements that contain input from
users. It helps us to update runtime values and prevent SQL injection concerns.

import sqlite3

def updateSqliteTable(speaker_id, phone):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sql_update_query = """Update speaker set phone = ? where speaker_id = ?"""
 data = (phone, speaker_id)
 cursor.execute(sql_update_query, data)
 sqliteConnection.commit()
 print("Record Updated successfully")
 cursor.close()

 except sqlite3.Error as error:
 print("Failed to update sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The sqlite connection is closed")

updateSqliteTable(3, 75006)

> python sqlite_update_parameterized.py
Connected to SQLite
Record Updated successfully
The sqlite connection is closed

Update multiple rows of SQLite table using
cursor’s executemany()

In the above example, we have used execute() method of cursor object to update a single
record, but sometimes in Python application, we need to update multiple rows of the SQLite
table. For example, you want to update the phone numbers of many speakers at once.

So instead of executing the UPDATE query every time to update each record, you can
perform bulk update operation in a single query. We can modify multiple records of the
SQLite table in a single query using the cursor.executemany() method.

The cursor.executemany(query, seq_param) method accepts two arguments:

1.SQL query

2.List of records to be updated.

import sqlite3

def updateMultipleRecords(recordList):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sqlite_update_query = """Update speaker set phone = ? where speaker_id = ?"""
 cursor.executemany(sqlite_update_query, recordList)
 sqliteConnection.commit()
 print("Total", cursor.rowcount, "Records updated successfully")
 sqliteConnection.commit()
 cursor.close()

 except sqlite3.Error as error:
 print("Failed to update multiple records of sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("The SQLite connection is closed")

records_to_update = [(12345, 4), (45678, 5), (98765, 6)]
updateMultipleRecords(records_to_update)

> python sqlite_update_multiple_records.py
Connected to SQLite
Total 3 Records updated successfully
The SQLite connection is closed

Updating multiple Columns of a SQLite table
import sqlite3

def updateMultipleColumns(speaker_id, phone, email):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sqlite_update_query = """Update speaker set phone = ?, email = ? where speaker_id = ?"""
 columnValues = (phone, email, speaker_id)
 cursor.execute(sqlite_update_query, columnValues)
 sqliteConnection.commit()
 print("Multiple columns updated successfully")
 sqliteConnection.commit()
 cursor.close()

 except sqlite3.Error as error:
 print("Failed to update multiple columns of sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("sqlite connection is closed")

updateMultipleColumns(3, 66666, 'vlad.dracula@gmail.com')

> python sqlite_update_multiple_columns.py
Connected to SQLite
Multiple columns updated successfully
sqlite connection is closed

Python Delete from SQLite Table

How to:
● Delete a single row, multiple rows, all rows, single

column, and multiple columns from SQLite table using
Python.

● Use a Python parameterized query to provide value at
runtime to the SQLite delete query.

● Commit and rollback the delete operation.
● Perform bulk delete using a single query.

Steps to delete a single row from the
SQLite table

1.Connect to SQLite from Python.
2.Create a cursor object using the SQLite connection object.
3.Define the SQLite DELETE Query. Here you need to know the table, and it’s column

name on which you want to perform delete operation.
4.Execute the DELETE query using the cursor.execute()
5.After the successful execution of an SQLite delete query, commit your changes to the

database.
6.Close the SQLite database connection.
7.Catch SQLite exceptions if any.
8.Verify the result by selecting data from SQLite table from Python.

import sqlite3

def deleteRecord():
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 # Deleting single record now
 sql_delete_query = """DELETE from speaker where speaker_id = 6"""
 cursor.execute(sql_delete_query)
 sqliteConnection.commit()
 print("Record deleted successfully ")
 cursor.close()

 except sqlite3.Error as error:
 print("Failed to delete record from sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("the sqlite connection is closed")

deleteRecord()

> python sqlite_delete_single_record.py
Connected to SQLite
Record deleted successfully
the sqlite connection is closed

Use parameterized query to delete a row from a SQLite table
import sqlite3

def deleteSqliteRecord(speaker_id):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")

 sql_update_query = """DELETE from speaker where speaker_id = ?"""
 cursor.execute(sql_update_query, (speaker_id,))
 sqliteConnection.commit()
 print("Record deleted successfully")

 cursor.close()

 except sqlite3.Error as error:
 print("Failed to delete reocord from a sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("sqlite connection is closed")

deleteSqliteRecord(5)

> python sqlite_delete_single_record_parameterized.py
Connected to SQLite
Record deleted successfully
sqlite connection is closed

Delete multiple rows from SQLite table

Instead of executing delete query every time to delete each record, we can
perform a bulk delete operation in a single query from Python.

We can delete multiple records of the SQLite table in a single query using the
cursor.executemany() method.

The cursor.executemany(query, seq_param) method accepts two arguments
SQL query and List of record to delete.

import sqlite3

def deleteMultipleRecords(speaker_idList):
 try:
 sqliteConnection = sqlite3.connect('py4bio_meeting.db')
 cursor = sqliteConnection.cursor()
 print("Connected to SQLite")
 sqlite_update_query = """DELETE from speaker where speaker_id = ?"""

 cursor.executemany(sqlite_update_query, speaker_idList)
 sqliteConnection.commit()
 print("Total", cursor.rowcount, "Records deleted successfully")
 sqliteConnection.commit()
 cursor.close()

 except sqlite3.Error as error:
 print("Failed to delete multiple records from sqlite table", error)
 finally:
 if (sqliteConnection):
 sqliteConnection.close()
 print("sqlite connection is closed")

speaker_idsToDelete = [(4,),(3,)]
deleteMultipleRecords(speaker_idsToDelete)

> python sqlite_delete_multiple_records.py
Connected to SQLite
Total 2 Records deleted successfully
sqlite connection is closed

Exercise:
You are given the ‘refGene_hg19.db’.

Write a Python SQLite script that accepts a
human gene symbol e.g. SMAD3 and returns the

list of reference sequence Ids (RefSeQ Ids)
associated with it...

Acknowledgements / Contributions
Some of these slides are Copyright 2010- Charles R. Severance (
www.dr-chuck.com) of the University of Michigan School of Information
and open.umich.edu and made available under a Creative Commons
Attribution 4.0 License. Please maintain this last slide in all copies of the
document to comply with the attribution requirements of the license. If
you make a change, feel free to add your name and organization to the
list of contributors on this page as you republish the materials.

Initial Development: Charles Severance, University of Michigan School of
Information

… Insert new Contributors here

...

http://www.dr-chuck.com/
http://open.umich.edu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

